Knodle: A Support Vector Machines-Based Automatic Perception of Organic Molecules from 3D Coordinates
نویسندگان
چکیده
Here we address the problem of the assignment of atom types and bond orders in low molecular weight compounds. For this purpose, we have developed a prediction model based on nonlinear Support Vector Machines (SVM), implemented in a KNOwledge-Driven Ligand Extractor called Knodle, a software library for the recognition of atomic types, hybridization states, and bond orders in the structures of small molecules. We trained the model using an excessive amount of structural data collected from the PDBbindCN database. Accuracy of the results and the running time of our method is comparable with other popular methods, such as NAOMI, fconv, and I-interpret. On the popular Labute's benchmark set consisting of 179 protein-ligand complexes, Knodle makes five to six perception errors, NAOMI makes seven errors, I-interpret makes nine errors, and fconv makes 13 errors. On a larger set of 3,000 protein-ligand structures collected from the PDBBindCN general data set (v2014), Knodle and NAOMI have a comparable accuracy of approximately 3.9% and 4.7% of errors, I-interpret made 6.0% of errors, while fconv produced approximately 12.8% of errors. On a more general set of 332,974 entries collected from the Ligand Expo database, Knodle made 4.5% of errors. Overall, our study demonstrates the efficiency and robustness of nonlinear SVM in structure perception tasks. Knodle is available at https://team.inria.fr/nano-d/software/Knodle .
منابع مشابه
Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملAutomatic classification of highly related Malate Dehydrogenase and L-Lactate Dehydrogenase based on 3D-pattern of active sites
Accurate protein function prediction is an important subject in bioinformatics, especially wheresequentially and structurally similar proteins have different functions. Malate dehydrogenaseand L-lactate dehydrogenase are two evolutionary related enzymes, which exist in a widevariety of organisms. These enzymes are sequentially and structurally similar and sharecommon active site residues, spati...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and modeling
دوره 56 8 شماره
صفحات -
تاریخ انتشار 2016